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Managing	the	Memory	Hierarchy	
Breakout	Session	1	

Douglas	Doerfler	(LBL),	et	al,	
DOE	Center	of	Excellence	Performance	Portability	

MeeDng	
April	18-21,	2016	



•  What	are	the	pracDcal	limitaDons	of	using	current	programming	models	
for	managing	the	memory	hierarchy	
– Do	you	plan	to	integrate	mulD-level	memory	support	into	your	code?	
– What	are	your	memory	capacity	requirements	in	the	2020	Dmeframe?	
–  Can	you	live	with	16,	32,	64	GB	per	node?	Per	NUMA	domain?	
– How	much	effort	are	you	willing	to	do	to	support	mulD-level	memory?		

•  Languages,	direcDves,	aXributes,	other?	
– Are	you	willing	to	use	a	“non-standard”	memory	management	programing	
model?	

– Do	you	need	memory	management	interoperability	of	C,	C++	and	Fortran	in	a	
common	code?	

– Would	you	like	to	see	a	type	aXribute	for	variables	to	declare	fast	memory	
storage?	

•  What	is	the	proper	balance	between	user	control	and	runDme	control	
for	memory	placement	and	management?	
– Did	Ian’s	presentaDon	cover	all	of	the	possibiliDes	here?				

Breakout	Charge	QuesDons	



Se`ng	the	Stage	

•  AssumpDons,	boundary	condiDons	for	the	discussion	
– On	package	memory	(MCDRAM,	HBM)	
– Off	package,	bulk	capacity,	memory	(DDR)	
–  Byte	addressable	non-volaDle	memory	(future	NV	technologies)	

•  Quick	survey:	Are	you	acDvely	integraDng	mulD-level	memory	(MLM)	
into	your	code?	
– About	¼		of	applicaDon	developers	said	yes	
– About	¼	said	will	be	in	the	near	future	
– About	½	were	not	developers	

•  Are	we	really	sure	we	need	MLM	concepts	in	next-generaDon	
machines?	
– No	clear	indicaDon	we	can	avoid	MLM	in	future	machines	
–  SkepDcal	that	on-package	memory	only	can	saDsfy	adequate	Byte/FLOP	balance	
raDos		



PracDcal	LimitaDons	of	using	Current	
Programming	Models	

•  What’s	wrong	with	memkind?	
– Assumes	that	were	data	resides	is	staDc,	but	real	codes	go	through	mulDple	
phases	so	you	want	to	dynamically	change	data	aXributes	

– Memkind	soluDon	is	completely	developer	managed	
– Not	sure	why	one	would	want	a	library-based	soluDon	
–  But	sDll	want	a	way	for	for	developers	to	to	this	at	a	low	level	

•  What	developers	really	want	is	to	able	to	describe	the	aXributes	of	data	
and	have	introspecDon	of	the	node	to	help	manage	data	placement	
–  Some	combinaDon	of	the	compiler	and	a	“runDme”	to	manage	the	data	

•  Also	need	a	higher	level,	higher	producDvity	soluDon	
–  CHAI	style?	
– UVM?	
– OpenMP?	



•  There	is	a	desire	and	a	need	for	variable	type	aXribute	extensions	
to	specify	“memory	characterisDcs”	
– AXributes	(vs	declaraDons)	allow	type	characterisDcs	to	propagate	
through	the	system	

– Some	disagreement	that	a	declaraDve	statement	is	sufficient,	but	there	
was	some	argument	that	the	extra	semanDcs	would	help	in	using	a	data	
structure	with	this	informaDon	

•  This	is	a	language	issue	and	is	just	as	applicable	to	Fortran	as	C/C++	
– However,	changes	in	type	system	in	languages	will	take	Dme	to	get	
through	the	language	commiXee	

•  Some	discussion	that	the	aXribute	should	not	be	“fast”,	but	instead	
“doesn’t	need	to	fast”.	
– May	also	want	to	capture	other	aXributes	such	as	latency	

•  AcDon:	Cray	has	agreed	to	explore	the	aXribute	feature	
– Group	can	send	suggesDons	to	Luis	De	Rose	(ldr@cray.com)		



•  Would	appreciate	not	just	a	programming	model	but	also	a	tool	to	
tell	us	what	data	structures	would	benefit	most	from	fast	memory	
– This	is	my	hotspot	for	memory	accesses	
–  Is	this	a	latency	bound	access,	or	BW	bound	
– This	sDll	may	have	the	limitaDon	that	the	results	will	change	with	input	
deck	and	phase	changes	in	the	code	

•  AcDon:	RecommendaDon	the	the	CoE	have	tutorials	for	tools	
available	today	
– Cray	does	have	some	capability	in	this	area	based	on	L2	misses,	release	
someDme	this	year	

– Nvidia’s	nvprof	can	already	see	memory	migraDons	(UVM)	



Languages,	direcDves,	aXributes,	other?	

•  How	do	get	C/C++	and	Fortran	to	use	the	same	mechanisms	for	
data	aXributes	

•  Much	of	the	previous	discussion	covered	this	topic	area	
•  This	propagates	down	to	the	libraries	too	
•  We	need	cross	standard	standards!	



Proper	balance	between	User	control	and	
RunDme	control	for	memory	management 		

•  Statement:	“Doing	memory	management	by	hand	is	hard,	we	did	
that	on	RoadRunner	for	the	SPEs	…”	

•  Statement:	“Would	like	to	see	a	hierarchy	of	approches	from	use	it	
as	a	cache	right	through	to	low-level	programmer	driven	

•  Again,	much	of	this	topic	was	discussed	in	prior	topics	
•  ConDnued	to	make	the	case	runDme	control	
•  Impacts	MPI,	O/s,	libraries,	I/O	buffers,	etc	
•  Analogy	with	binding	processes	and	threads	to	cores	is	similar	
– Except	we	really	don’t	want	to	bind	due	to	dynamic	nature	of	an	
applicaDon	

•  A	brief	discussion	regarding	the	ability	of	the	O/S	to	be	part	of	the	
memory	management	
– Certainly	could,	but	should	it	be?	->	NO	




